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The N - d i m e n s i o n a l  hyd rogen  a tom in externa l  fields o f  the type  Ar and  Ar 2 
is s tudied.  We descr ibe  how Lie a lgebras  are used  to ob ta in  RS- type  per tu rba-  
t ion expans ions .  We presen t  express ions  for  the  pe r tu rba t ion  energy up to 
4th o rde r  for a rb i t ra ry  d imens ion  and arb i t ra ry  state o f  the hyd rogen  atom. 
With  symbol ic  compu ta t i on ,  results are ob t a ined  in c ompa c t  and  t r anspa ren t  
form.  
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Introduction 

The hyd rogen  a tom in an externa l  spher ica l ly  symmet r ic  field is a very interes t ing 
system from many  different  po in ts  o f  view. Let us men t ion  as examples  the s tudy 
of  screened C o u l o m b  po ten t ia l  which is very impor t an t  in sol id  state physics  
[1-3]  and  the external  po ten t ia l s  of  the type  r ~, a = 1, 2, 3 , . . . ,  which  is re levant  
to the conf inement  o f  quarks.  The la t ter  p r o b l e m  has been  s tud ied  in a number  
o f  recent  pape r s  [4-8] .  The p r o b l e m  most  re levant  to q u a n t u m  chemis t ry  consists  
in the case o f  the two-d imens iona l  hyd rogen  a tom in a s t rong magne t i c  field. In  

* Dedicated to Professor J. Kouteck~, on the occasion of his 65th birthday 
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addition to the description of  the physics of  this problem, the comprehensive 
paper  by MacDonald  and Ritchie [9] also includes the perturbation series 
expansions for the cases of  weak and strong magnetic fields. Moreover, they 
show that two-point Pad6 approximants  provide a reliable interpolation between 
these two limiting situations. Although their study constitutes an admirable work 
in dealing with the very difficult case of  strong coupling, they were able to obtain 
only a first order low-field correction, which is quadratic in the intensity of  the 
effective magnetic field. The major  difficulty resides in  the fact that the hydrogen 
atom has both a discrete and a continuum spectrum. We have shown in a series 
of  papers [10-22] and also in a review article [23] that this difficulty can easily 
be overcome by using algebraic methods, see also [24-27]. For perturbations of  
the type Ar a, states with principal quantum numbers n and n' are coupled only 
if In - n'l-< a + 1. Moreover,  the application of a modified Rayleigh-Schr6dinger 
perturbation is very straightforward. There is thus no special need to avoid the 
wavefunction in the calculationsl 1 

In the above-mentioned papers,  almost all results were formulated in three space 
dimensions. It turns out that relatively small modifications permit us to calculate 
perturbation coefficients for arbitrary dimension and arbitrary hydrogen quantum 
numbers. In this paper,  we present the use of  the so(2, 1) algebra to study the 
N-dimensional  hydrogenic perturbation problem (a = 1, for "charmonium"  and 
a = 2, for "harmonium") .  There are enough indications that with the so(4, 2) 
algebra, general anisotropic perturbations could also be considered in a similar 
way. Thus, this paper  is, in a sense, a starting point for more complicated problems. 

The use of  symbolic computat ion opened a new vista in this work. The calculations 
were done in the language MAPLE which is being developed at Waterloo [31]. 
After some careful manipulations,  we were able to obtain all expressions symboli- 
cally. After the application of a modified perturbation theory which produced 
an algebraic expression for the Taylor expansion of the wavefunction, a simple 
MAPLE command  provided us with the contributions for the perturbation energy. 

In order to keep the size of  this communicat ion reasonable, we indicate only the 
basic ideas and describe final results. A detailed description of our technique 
will be published later. We also limited ourselves to the evaluation of perturbation 
coefficients. It will be shown by Adams [32] in a paper  published in this issue, 
how these results can be uged for the construction of Pad6 approximants.  

Finally, while we are only concerned in getting the perturbation energy in this 
paper,  we are currently pursuing the study of  upper  and lower bounds for the 
energy using two other methods, namely: renormalized inner projection [33-40] 
and a method of moments  [41-43]. The final results are very encouraging and 
will be published later. 

1 There aretwo other alternative formulations of this problem: explicit calculationofthewavefunction 
is avoided by Killingbeck [28] whereas logarithmic perturbation expansion is used by Privman [29], 
both treating spherically symmetric problems only. The Stark effect has been studied by Austin [30] 
using Killingbeck procedure. A comparison of these methods with the present work is in preparation 
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Algebraic formulation of the problem 

Let us consider the N-dimensional hydrogen atom in radial external field of the 
type V(r)= Ar a, where a = 1 corresponds to "charmonium" while a = 2 corre- 
sponds to "harmonium".  The Schr6dinger equation for this system can be written 
in the form: 

The radial hydrogenic equation for each perturbed states is easily obtained by 
separation of variables and regrouping of terms: 

[�89 fi2 +2~+ Ara]~ = [ En + AE]* , (2) 

where 

( N - 1 ) ( N - 3 )  
se= k ( k +  1) - +I(l+N-2), 

4 

N 3 k=l~ . . . .  2 2' 
1 

En = - 2 n  2, 

N 1 
n = k +  1 + nr = l+- - - -+n ,  

2 2 

In this equation, n is a principal quantum number and the label of the state 
considered, 1 an angular momentum quantum number and n, is a radial quantum 
number. 

In order to express the hydrogenic eigenvalue problem in terms of the so(2, 1) 
algebra generators, we first need to introduce the scaling transformation [11]: 

r A 
R = -  and thus Pr = n/3r. 

n 

After multiplication by the model space variable R, eq. (2) becomes 

[�89 +2~+�89 + Ana+2Ra+l]x~= n2 A E R~. (3) 

Let us use the realization of the so(2, 1) algebra in the scaled coordinate system 
and introduce the following generators [25]: 

T3 1 "~ "~2 = ~[RPn + ~--1  _~_ ~ ] ,  
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and the Casimir operator 

= T 3 - ~t 1 ~t 2. 

The perturbed hydrogenic eigenvalue problem can now be reformulated in terms 
of these generators as 

[ ( T 3  - n ) q - a n a + 2 ( T 3  - T1) a + l -  n2  A E  (T3  - T 1 ) ] *  ~-- 0, 

or equivalently in a more compact form 

[/s + ~ W - A E S ] * =  0, (4) 

where 

 3-n, 

= na+~/~ ~ 

Since 2r 2 and T3 commute, they can be simultaneously diagonalized. We denote 
their common normalized eigenvectors by [kq) and write 

7"2lkq) = k( k + 1)[kq), 

7"3lkq)= q[kq), 

where q = k +  1 + q~, for q~ any non-negative integer. 2 

The matrix elements o f /~  = T3-  T1 can be then easily obtained by the relation 

_~[kq) = qlkq)- �89 - k)(q  + k + 1)]'/21 k, q + 1)+ [(q + k)(q  - k - 1)]~/2lk, q - 1)]. 
(5) 

All other matrix elements can be obtained using Eq. (5) and matrix operations. 

Modified perturbation theory 

We are now ready to apply perturbation theory. As mentioned previously, the 
explicit form for the eigenfunctions presents no particular difficulties. However,  
since our problem is essentially "non-orthogonal"  due to the presence of the 
operator S [10], we need to consider a "modified" perturbation theory. Let us 
normalize the vectors I~} in such a way that (knlq~) = 1 and define the resolvent 
operator associated with Eq. (4), 

(~= • [kq)(kq__.__~l, 

q~n n - - q  

2 Note  the difference between the label n of  the energy level of  concern and q, the general eigenvalue 
of  the generator  T3 



N-dimensional hydrogen atom 

and the "per turbat ion"  operator X, 
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In order to write the wavefunction in a most compact  form, we have introduced 
the new constant w such that Aw = AE. 

I f  we denote ]kn) by ]@), the expression for the wavefunction becomes 
A A 

I,P) = I~) § AQxI~ ' ) ,  

o r  

IV> = I+>+ A 0 ~ I + )  + A 2 0 ~ 0 ~ 1 + >  + - -  �9 (6) 

From Eq. (4), we obtain the following relation, 

< + I X I " I ' >  =- O. (7) 

Substituting Eq. (6) in Eq. (7) yields the following expression for the calculation 
of the energy up to 4th order: 

o = a ( + l . ~ l + )  + A =({I,l+~O.~l+) + A ~(+1-~0+~0>~1+) 

or more explicitly 

AE (qblSl~) = A(~] ff']qb)+ A2(~lPr A3(qblX~)P~OP~lqb)+ ' ' -  . (9) 

Symmetric perturbation theory is then applied to get expressions for the terms 
in Eq. (8) or Eq. (9). Namely,  we use the "bra  and ket symmetry" of  the expressions 
involved. 

I f  we were to use the analogy with the usual Rayleigh-Schr6dinger perturbation 
theory, we would expand both the wavefunction and the energy as Taylor series 
in A. Alternating substitution into Eq. (7) and Eq. (8) would then give an 
expression for the nth order of  the perturbation energy. 

Another way to obtain the same result would be to write explicitly the Taylor 
coefficients of  the energy. This can be done by the bracketing technique or by 
Lagrange method. These two methods were formulated in a most transparent 
way by Silverstone [43-46]. 

However, in both of the above methods, a full expansion is needed before the 
actual numerical calculation. In our case, we have found it very convenient to 
first express Eq. (8) in terms of the parameters n, ~: and ~o. As we are looking for 
the perturbation energy up to 4th order, we substitute into the first term of Eq. 
(8), i.e. (~[~[qb), the following expression for o>, 

O) = A E  1 -~ A E 2 A  q- AE 3A 2--~ A E 4  A3. (10) 
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But only the expans ion  up to the second power  of A is subst i tuted for to in the 
second term of Eq. (8), and  similarly, decreasing powers of A are needed  in the 
expans ion  of to to be then  subst i tuted in  the next  terms of Eq. (8), i.e. we let3: 

to = AE1 + AE2A + A E 3 A 2  in the second term, 

w = AE1 + AE2A in the third term, 

to = AE1 in the fourth term. 

The coefficients of each power  of the coupl ing constant  are then collected. 
Al though these man ipu la t ions  can even be per formed by hand ,  they were greatly 
facili tated by the use of the symbolic  computa t ion  language MAPLE,  which 

possesses a simple c o m m a n d  "coeff" that automat ica l ly  executes this regrouping 
of terms. We can then write the fol lowing relations for the coefficients in the 
expans ion  of  the per tu rba t ion  energy4: 

AE1 = f l ( n ,  ~:), 

aE~ =A(n, ~, AE1), 

AE~ =A(n, ~, aE~, AE~), 

AE 4 =)Ca(n, ~, AE1, AE2, AE3). 

F i n a l  r e s u l t s  

By successive subst i tut ions,  we obta in  the fol lowing expressions for the 
coefficients of the pe r tu rba t ion  energy. 

For  cha rmon ium,  we have: 

m E  1 3 2 1~ = ~ n  - -  ~ ,  

AE2 = --~n2(7n4 + 5n 2 - 3~2), 

AE3 = ~6na(33n 6+ 75n 4 -  7n2~ 2 -  10~3), 

AE4 = -~4n6(465 n 8 + 2275 n6 + 440n 4 - 99n4~ 2 - 90n2~ 3 - 180n2~ 2 --  8 4 ~ 4 )  �9 

And  for h a r m o n i u m ,  we have: 

AE1 = �89 2 + 1 - 3~:), 

A E  2 = -- 1~n6(143 n 4 + 345 n 2 + 28 -- 90n 2~: _ 21~2 _ 126~), 

AE 3 = ~6n1~ 11145n4+ 8645n2+484 - 1305n4~:-- 6825n2~:-  33~3 

+ 33 ~:2 _ 2706~), 

3 We could substitute Eq. (10) in all terms of Eq. (8) but then larger expressions having a greater 
number of unnecessary terms for the calculation of the perturbation energy up to 4th order would 
be produced: of course, in this case the computer time required would be negligible. However, in 
order to keep demands on the computer memory minimal as well as to illustrate a pattern for the 
nth order perturbation energy, we introduce the following substitutions for oJ 
4 Intermediary steps illustrating the substitutions and regrouping of terms are shown in the Appendix 
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AE4 = -y~24n14(1 502 291n81+22 937 530n6+ 54 811 295n 4 

+25  371 140n2+ 1 137 3 4 4 -  1 640 100n6~:+251 370n4~ 2 

- 19 742 520n4~:- 3060n2~3+ 2 184 330n2~:2- 31 859 700n2s c 

- 4005~ : 4 -  7260~ :3 + 1 425 540s c2 - 7 286 640sc). 
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Reformulation of the problem in rational arithmetic 

Although this whole procedure  can be per formed with normalized basis vectors 
]kq>, it would  take considerable addit ional  computer  time to eliminate the irra- 
t ional factors. For  this reason, we introduce,  in a similar fashion as Silverstone 
did in [47], the following unnormal ized  vectors: 

ikq># r 1,, k ( q - k - 1 ) ! _ ]  Ikq>, 

and 

Ikq>'~#=k ( k + q ) !  J Ikq). 

We then have the fol lowing relations between these two vectors 

Ikq) ## = I - k - l ,  q)#, 

and for arbitrary vectors Vl and v2 

In terms of  the new basis vectors, Eq. (5) now becomes:  

R]kq) # = qlkq) # - �89 - k)]k, q + 1) ~ + (q + k)lk, q -  1)~]. 

We also have the following expressions for  ~2 and /~3: 

R2]kq)# =�89 2 -  k ( k +  l)]lkq) # - �89 + 1)(q - k)lk,  q +  l) ~ + (2q - 1) 

x (q + k)[k, q - 1> #] 

+ � 8 8  , q +  2> # + ( q + k - 1 ) ( q + k ) l k  , q - 2 )  #] 

R31kq># = �89 + 5q 2 - 3 k ( k +  1)]lkq) # 

-~[(5q2 + 5q + 2 k ( k  + 1))(q - k)l k, q + 1)}* + (5q 2 - 5q 

+ 2 k ( k  + 1))(q + k)l k, q - 1> ~ ] 

+~[(q  + 1)(q - k + 1)(q - k)lk,  q + 2) # 

+ (q - 1)(q + k - 1)(q + k)[k, q - 2) ~] 

- s~[(q - k + 2 ) ( q  - k +  1)(q - k ) l k  , q +3> # 

+ (q + k - 2)(q + k -  1)(q + k)lk,  q - 3)#]. 
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All matrix elements are in rational form, so the final expressions are in rational 
form. Moreover, in all expressions, we use the property that coefficients of 
[k, q -  Aq} # can be obtained from the coefficients of Ik, q + Aq) # by substituting 
q by - q  and then multiplying by ( -1 )  b in matrix elements related to /~b. Finally, 
let us  mention that in order to keep the simplicity of the normalizing factors, we 
have defined all basis vectors in terms of k and q, and later in intermediate steps, 
simplified the expressions by replacing the factor k(k+ 1) by its value ~. 

Conclusions 

In this paper, we have obtained the perturbation energy up to the 4th order. The 
use of symbolic computation language was invaluable in efficiently producing 
simple expressions in terms of all parameters. Our results were then numerically 
checked with [19] and [28, 29] for "charmonium" and with [29] for "harmonium",  
by suitably replacing values for k and n. Although we only presented the 
perturbation energy up to the 4th order, it seems to be relatively easy to get a 
similar general expression for the nth order. 

Further, let us stress that we can easily obtain an expression for the wavefunction 
bay simply substituting our results for the perturbation energy AE in the operator 
X, and then use the MAPLE command "coeff" to get the desired Taylor wavefunc- 
tion expression in h. In such a way, we are able to calculate additional mean 
values of observables other than the energy. 

Finally let us mention that our results for N = 2, n = 0, r = 0 were successfully 
used for the construction of Pad6 approximants for the energy for the physically 
important system of  the two-dimensional hydrogen atom in a strong magnetic 
field [32]. 

Appendix 

Here, we show the intermediate steps involved in getting the final formula for 
AE2 as well as the contributions for hE3 and AE4, originating from the expression 
for the second term of Eq. (8), i.e. <Ol2021o>. 
From Eq. (9), we then have: 

A2(dPlJ~(~Xlqb) _~n2(34n4+5na_24ton 2_ 18~na+Sto~+4to2)A 2. 
<OlglO> 

After substituting to by AE1 + AEaA + AE3A a, this last expression reads 

-1n2134n4+ 5 n 2 - 1 8 n 2 ~ -  24AE1 n 2 + 8AE 1~ + 4AE 2 

- (24AE2n 2 -  8AE2sr- 8AEIAE2)A 

+ (8A E3~ + 8AEIAE3 + 4AE 2 - 24AE3 n2)A 2 _[_ 8AE2AE3A 3 + 4AE2A 4]A 2. 
(12) 
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Using the M A P L E  c o m m a n d  "coet t" ,  the coefficient  in 12 in Eq. (12) is found 
to be 

-�89 4 + 5 n 2 - 18 n~s c - 24AE1 n 2 + 8 seAE1 + 4A E~). 

Replacing the value of  AE1, one obtains the fol lowing expression for  the second 
order  per turbat ion energy: 

AE2 = - ~ n 2 ( 7 n 4 +  5n 2 - 3 ~:2). 

Let us notice the simplicity o f  this final result which is due to the cancellation 
and regrouping of terms after the substitution of AE1. 

The coefficient A of  ~3 in Eq. (12) is a contr ibut ion to the calculation o f  AE3: 

A = n 2 A E 2 ( 3 n  2 - ~ - AE1). 

Similarly, the coefficient B of  A 4 in Eq. (12) will have to be accounted  for in the 
calculation o f  AE4. 

B = �89 n 2 -  2~:AE3 - 2AE1AE3 - AE2). 
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